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Scaling behavior for finiteO„n… systems with long-range interaction
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A detailed investigation of the scaling properties of the fully finiteO(n) systems, under periodic boundary
conditions, with long-range interaction, decaying algebraically with the interparticle distancer like r 2d2s,
below their upper critical dimension, is presented. The computation of the scaling functions is done to one loop
order in the nonzero modes. The results are obtained in an expansion of powers ofA«, where«52s2d up to
O(«3/2). The thermodynamic functions are found to depend upon the scaling variablez5RU21/2L22h2«/2,
whereR andU are the coupling constants of the constructed effective theory, andL is the linear size of the
system. Some simple universal results are obtained.
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I. INTRODUCTION

The theory of continuous phase transitions is based on
hypotheses that at temperatures close to the criticalTc , there
is only one dominating length scale related to the criti
behavior of the system. Because of the divergent natur
the correlation length as the critical point is approached,
microscopic details of the system becomes irrelevant for
critical exponents describing the singular dependence of
thermodynamic functions. This intuitive picture is based
the grounds of the renormalization-group treatment
second-order phase transitions.

Scaling is a central idea in critical phenomena near a c
tinuous phase transition and in the field theory when we
interested in the continuum limit@1#. In both cases we are
interested in the singular behavior emerging from the ov
whelming large number of degrees of freedom, correspo
ing to the original cutoff scale, which need to be integra
out leaving behind long wavelength which vary smooth
Their behavior is controlled by a dynamically generat
length scale: the correlation lengthjb . Such a fundamenta
idea is difficult to test theoretically because it requires
study of a huge number of interacting degrees of freed
Experimentally, however, one hopes to be able to study s
ing in finite systems near a second-order phase transi
Namely, the system is confined to a finite geometry and
finite-size scaling theory is expected to describe the beha
of the system near the bulk critical temperature~for a review
on the finite-size scaling theory see Refs.@2# and @3#!.

The O(n)-symmetric vector models are extensively us
to explore the finite-size scaling theory, using different me
ods and techniques both analytically and numerically. T
most thoroughly investigated case is the particular one
responding to the limitn5` ~this limit includes also the
mean spherical model! @3#. In this limit, these models are
exactly soluble for arbitrary dimensions and in a general
ometry. These investigations were devoted exclusively
systems with short~including nearest neighbors! as well as
long-range forces decaying with the interparticle distance
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a power law. For finiten the most frequently used analytica
method is that of renormalization group@1,4#. However this
is limited to the case of short-range interaction. The cro
over from long to short-range forces was discussed in R
@5#, where it has been found that renormalized values of
temperature and the coupling constant are continuous fu
tions of the parameter controlling the range of the inter
tion, when this approaches the value 2 characterizing
short-range force potential. The case of pure long-range
teraction was investigated very recently in Ref.@6# ~a com-
ment on the method and the results obtained there is
sented in Sec. IV!. In the mean time, special attention wa
devoted to the investigation of finite-size scaling for t
mean-spherical model with long-range interaction~for a re-
view see Ref.@7# and references therein!.

In recent years there has been an increasing interest in
numerical investigation of the critical properties of syste
with long-range interaction decaying at large distancesr by a
power law asr 2d2s, whered is the space dimensionality an
s is the parameter controlling the range of the interacti
The mostly used technique for this achievement is the Mo
Carlo method. This method was used to investigate the c
cal properties of Heisenberg ferromagnetic systems@8# as
well as Ising models@9,10#. Nevertheless all the analysi
there was concentrated on systems with classical critical
havior in the sense that the critical exponents are given
Landau theory.

In this paper we present a detailed investigation of
finite-size scaling properties of the field theoreticO(n) vec-
tor w4 model with long-range interaction. We will also chec
the influence of the interaction range on the critical behav
These interactions enter the exact expressions for the
energy only through their Fourier transform, where the le
ing asymptotic isU(q);qs* , ands* 5min(s,2) @11#. As it
was shown for bulk systems by renormalization-group ar
ments,s>2 corresponds to the case of finite~short-! range
interactions, i.e., the universality class then does not dep
on s @11,12#. Values satisfying 0,s,2 correspond to long-
range interactions and the critical behavior depends ons.
With the renormalization-group treatment it has been fou
that the critical behavior depends on the small paramete«
52s2d, where 2s corresponds to the upper critical dime
sion@11#. According to the above reasoning one usually co
©2001 The American Physical Society03-1
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siders the cases.2 as uninteresting for critical effects, eve
for the finite-size treatments@13#. So, here we will consider
only the case 0,s<2.

Here, we will provide a systematic and controlled a
proach to the quantitative computation of the thermodyna
momenta, usually used in numerical analysis. These
menta are related to the Binder’s cumulant and to vari
thermodynamic functions like the susceptibility. We w
concentrate on the scaling properties of the coupling c
stants defining the system in the vicinity of the critical poi
Our method is quite general and should apply to a la
extent on the investigation of finite-size scaling in syste
with long-range interaction in the vicinity of the critica
point.

The plan of the paper is as follows. In Sec. II we revie
briefly, thew4 model with long-range interaction and discu
its bulk critical behavior. Section III is devoted to the expl
nation of the methods used here to achieve our analysis.
end the section with the computation of some thermo
namic quantities of interest. In Sec. IV we discuss our res
briefly. In the remainder of the paper we present some de
of the calculations of some formula used throughout the
per.

II. FINITE-SIZE SCALING FOR SYSTEMS WITH
LONG-RANGE INTERACTIONS

In the vicinity of its critical point the Heisenberg mode
with long-range interaction decaying as power law,
equivalent to thed-dimensionalO(n)-symmetric model@14#

bH$w%5
1

2EV
ddxF ~¹s/2w!21r 0w21

1

2
u0w4G , ~2.1!

where w is a short hand notation for the space depend
n-component fieldw(x), r 05r 0c1t0 (t0}T2Tc) andu0 are
model constants.V is the volume of the system. In Eq.~2.1!,
we assumed\5kB51 and the size scale is measured in un
in which the velocity of excitationsc51. We note that the
first term in the model denotesksuw(k)u2 in the momentum
representation, where the parameter 0,s<2 takes into ac-
count short-range as well as long-range interactions.b is the
inverse temperature. The nature of the spectrum suggests
the critical exponenth522s @11,12#. Here we will consider
periodic boundary conditions. This means

w~x!5
1

AV
(

k
w~k!exp~ ik•x!, ~2.2!

wherek is a discrete vector with componentski52pni /L
(ni50,61,62, . . . , i 51, . . . ,d) and a cutoffL;a21 (a
is the lattice spacing!. In this paper, we are interested in th
continuum limit, i.e.,a→0. As long as the system is finit
we have to take into account the following assumptio
L/a→`, jb→` while jb /L is finite.

Fisher et al. @11# and Yamazaki and Suzuki@12# have
shown that for the model under consideration the Lan
theory holds ford.2s. In the opposite case, i.e.,d,2s an
expansion in powers of«52s2d542d22h takes place,
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where 2s plays the role of the upper critical dimension. W
will present the renormalized parameters that characte
the bulk critical behavior and appear in the scaling functio
Since the computations are standard@1#, we will be quite
brief.

The application of the renormalized theory, above t
critical temperature, to the model Hamiltonian requires
scaling field amplitudeZ, a coupling constant renormaliza
tion Zg , and a renormalization of thew2 insertions in the
critical theoryZt . In terms of these, we define as usual

t5ZZt
21~r 02r 0c! and g5 l2«Z2Zg

21u0 . ~2.3!

In the remainder we will work in units where the referen
length l is set to unity. To one loop order the renormalizati
constants in the minimal subtraction scheme are given
@12#

Z511O~ ĝ2!, ~2.4a!

Zt511
n12

«
ĝ1O~ ĝ2!, ~2.4b!

Zg511
n18

«
ĝ1O~ ĝ2!. ~2.4c!

In Eqs.~2.4!,

ĝ5g
2

~4p!d/2G~d/2!
5

2g

~4p!sG~s!

3S 11
«

2
@ ln~4p!1c~s!#1O~«2! D , ~2.5!

wherec(x) is the digamma function.
The fixed point of theb function is atĝ5ĝ* with

ĝ* 5
«

n18
1O~«2!. ~2.6!

Before starting to investigate the finite-size scaling in t
field theoretical model under consideration, we shall rec
briefly the corresponding renormalization-group formalis
In the continuum limit, the lattice spacing completely disa
pears. The integration over wave vectors of the fluctuati
are evaluated without cutoff and are convergent. When so
dimensions of the system are finite the integrals over
corresponding momenta are transformed into sums. Since
lattice spacing is taken to be zero, the limits of the sums s
tend to infinity.

From general renormalization-group considerations
observableX, the susceptibility for example, will scale lik
@15#:

X@ t,g, l,L#5z~r!X@ t~r!,g~r!, lr,L#, ~2.7!
3-2
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SCALING BEHAVIOR FOR FINITEO~n! SYSTEMS . . . PHYSICAL REVIEW E 63 026103
where t is the reduced temperature,g a dimensionless cou
pling constant, andL the finite-size scale. The length scale
is introduced in order to control the renormalization proc
dure.

It is known that in the bulk limit, wheng(r) approaches
its stable fixed pointg* , we have

t~r!'tr1/n and z~r!'rgx /n, ~2.8!

wheregx andn are the bulk critical exponents measuring t
divergence of the observableX and the correlation length
respectively, in the vicinity of the critical point andr is a
scaling parameter. Using dimensional analysis together w
Eq. ~2.7! one gets

X@ t,g, l,L#5z~r!X@ t~r!~r l!2,g~r!,1,L/ lr#. ~2.9!

Choosing the arbitrary parameterr5L/ l, we obtain the well-
known finite-size scaling result

X@ t,g, l,L#5Lgx /n f ~ tL1/n!. ~2.10!

Here the functionf (x) is a universal function of its argu
ment. In the remainder of this paper we will verify the sc
ing relation~2.10! in the framework of model~2.1!.

III. FINITE-SIZE SCALING BELOW THE UPPER
CRITICAL DIMENSION

A. Method

The method, we shall use here to analyze the finite-s
scaling of the model under consideration, is originally due
Lüscher@16# in his study on the quantumO(n) nonlinears
model in 111 dimensions. An extension of the method w
employed by Brezin and Zinn-Justin@17# and by Rudnick
et al. @18# in their works on the finite-size scaling in system
with short-range potentials. Very recently it was used in
investigation of crossovers in quantumO(n) systems near
their upper critical dimension@19#. We will see here that the
problem related to finite-size scaling in systems with lon
range forces can be successfully analyzed by the same
proach. Nevertheless, here we will observe the emergenc
some subtleties, which need to be discussed.

The central idea of the method is that at finite linear s
L of the system, one can treat thek50 mode of the field
w(x), playing the role of the magnetization, separately fro
the nonzerok modes. The nonzero modes are treated per
batively using the loop expansion. They are integrated ou
yield an effective Hamiltonian for the lowest mode only. A
the modes being integrated out are regulated in the infra
by ukus and consequently the process is necessarily fre
infrared divergences. On the other hand the renormalizat
of the bulk theory control the ultraviolet divergences at fin
size. In other words if we define by

f5
1

VEV
ddxw~x! ~3.1!
02610
-

th

-

e
o

e

-
p-
of

e

r-
to

ed
of
ns

the total spin by unit volume, then, fromH, we can get an
effective Hamiltonian function off after entirely integrating
out thew(kÞ0) fields:

Heff5
Ld

2 S Rf21
U

2
f4D . ~3.2!

The coupling constantsR andU are computed in powers
of «, with the initial coupling constants renormalized as
their bulk critical theory. This approach will rule out all th
ultraviolet divergences of the bulk critical point. The ne
coupling constants are necessarily free of all ultraviolet
vergences since the theory is super-renormalizable@12#.
They are also free of infrared divergences as we are o
integrating out finite modes. Obviously, these constants m
obey the scaling forms,

R5Lh22f R~ tL1/n! and U5Ld2412h f U~ tL1/n! ~3.3!

for t*0, where f R and f U are scaling functions that ar
properties of the bulk critical point. They are analytic att
50. This is a consequence of the fact that only finite mod
have been integrated out.

Once the scaling functionsf R and f U are known, one can
attack the problem of computing observables in thew4

theory with the actionHeff . This theory is in dimensiond
close to the upper critical dimension 2s ~not in d close to the
usual 4), and the problem seems to be unsolvable. In
next section we will show that it is not the case.

In order to investigate the long-distance physics of
finite system, one has to calculate thermal averages with
spect to the new effective Hamiltonian defined in Eq.~3.2!.
They are related to the thermodynamic functions of the s
tem under consideration. The averages of the fieldf are
defined by

M2p5^~f2!p&5

E dnff2pexp~2Heff!

E dnfexp~2Heff!

. ~3.4!

Using an appropriate rescaling of the fieldf: F
5(ULd)1/4f, we can transform the effective Hamiltonia
into

Heff5
1

2
zF21

1

4
F4, ~3.5!

where the scaling variablez5RLd/2U21/2 is an important
quantity in the investigations of finite-size scaling in critic
statics@17,18# as well as in critical dynamics@20,21#. With
the effective Hamiltonian~3.5!, we obtain the general scalin
relation

M2p5L2p(d221h)
Lp(d2412h)/2

Up/2
f 2pS RL22h

L (d2412h)/2

U1/2 D
~3.6!
3-3
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for the momenta of the fieldf. Having in mind Eqs.~3.3!,
we can write down Eq.~3.6! in the following scaling form

M2p5L2p(d221h)F2p~ tL1/n!, ~3.7!

in agreement with the finite-size scaling predictions of E
~2.10!. In Eq. ~3.7!, the functionsF2p(x) are universal.

All the measurable thermodynamic quantities can be
tained from the momentaM2p . For example the susceptibi
ity is obtained from

x5
1

nEV
ddx^w~x!w~0!&5L22hF2~ tL1/n!. ~3.8!

Another quantity of importance for numerical analysis of t
finite-size scaling theory is the Binder’s cumulant defined

B512
1

3

M4

M 2
2

. ~3.9!

In the remainder of this section we concentrate on
computation of the coupling constantsR andU of the effec-
tive Hamiltonian~3.2! for the system with long-range inter
action decaying with the distance as a power law. As a c
sequence we will deduce results for the characteri
variable z5RU21/2L22h2«/2, the susceptibilityx, and the
amplitude ratior 5M4 /M 2

2 entering the definition of the
Binder’s cumulant.

B. Computation of the coupling constantsR and U

As we explained above, loop corrections will be treat
perturbatively on the nonzerok modes. At the tree leve
~lowest order in«52s2d) this procedure generates a sh
of the critical temperatureTc and a change of the couplin
constantu0 and additional operators involving powers ofw
larger than 4. The calculations will be performed in t
renormalized theory. The renormalized coupling constantuR
is expressed in terms of the dimensionless coupling cons
g5 l«uR in which the parameter l is an arbitrary length sca
Here we will work in system in which l51. Throughout
these calculations we use the minimal subtraction schem
this scheme, the counterterms of the massless theory inc
ing the w2 insertions are introduced. The one-loop count
term for the coupling constant and thew2 insertion will be
the only one relevant in the lowest corrections.

The finite-size correction to the renormalized coupli
constantt is given by

W d,s
t ~ t,g,L !5~n12!g

1

Ld ( 8
k

1

t1ukus
~3.10!

to one-loop order.
In order to investigate the finite-size scaling of the mo

under consideration one can use a suitable approach allo
to simplify the analytical calculations. In the cases52 it is
possible to replace the summand by its Laplace transfo
This is the so-called Schwinger representation. The aim
this approach is to reduce thed-dimensional sum in the right
02610
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hand side of Eq.~3.10! to the one-dimensional effectiv
problem. In the general case of arbitrarys, one cannot just
use the Schwinger transformation or at least in its fami
form. So we have to solve the problem by introducing so
kind of generalization for it. In the spirit of the same proble
a method to investigate the finite-size scaling in the fram
work of the mean-spherical model was suggested in R
@22#. The method is based upon the following genius iden

1

11za
5E

0

`

dx exp~2xz!xa21Ea,a~2xa!, ~3.11a!

where the functions

Ea,b~z!5(
l50

`
zl

G~a l1b!
~3.11b!

is the so-called Mittag-Leffler type functions. For a mo
recent review on these functions and others related to th
and their application in statistical and continuum mechan
see Ref.@23#. See also Ref.@22# and Appendix A.

Using the identity~3.11!, one gets, after some algebra,

W d,s
t ~ t,g,L !5~n12!g

Ls2d

~2p!sE0

`

dxxs/2 21Es/2,s/2

3S 2xs/2
tLs

~2p!sD @A d~x!21#, ~3.12a!

where

A~x!5 (
l52`

`

e2xl2. ~3.12b!

The analytic properties of the functionA(x) are known very
well. For largex, A(x)21 decreases exponentially and th
integral in the right-hand side of Eq.~3.12a! converges at
infinity. For small x, the Poisson transformationA(x)
5(p/x)1/2A(p2/x) shows thatA(x) converges.

For small x the integral in the right-hand side of Eq
~3.12a! has ultraviolet divergence for Red.s. So, an ana-
lytic continuation ind is required to give a meaning to th
integral. Adding and subtracting the small asymptotic beh
ior of the functionA(x), we get after some algebra,

W d,s
t ~ t,g,L !

5~n12!g
Ls2d

~2p!s
Fd,s~ tLs!12p~n12!gLs2d

3F ~4p!d/2GS d

2Ds sin
dp

s G21

~ tLs!d/s21, ~3.13a!

where
3-4
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Fd,s~y!5E
0

`

dxxs/221Es/2,s/2S 2
yxs/2

~2p!sD
3FA d~x!212S p

x D d/2G . ~3.13b!

In the particular cases52, from Eq.~3.13! we recover the
result of Ref.@17#.

By introducing thew2 counterterm insertion the renorma
ized coupling constantt is replaced bytZt , whereZt is given
by Eq. ~2.4b!. Hence to one loop order we have

R5tS 11ĝ
n12

« D1W d,s
t ~ t,g,L !. ~3.14!

At d52s, W d,s
t (t,g,L) has a simple pole. An expansio

about this pole leads to the final expression

R5t1
n12

s
ĝt lnt12s21~n12!G~s!ĝL2sF2s,s~ tLs!

1O~ ĝ2!. ~3.15!

This result shows that, at the critical point,R has the required
scaling properties of Eq.~3.3!, since

n215s2
n12

n18
«1O~«2!. ~3.16!

For the finite system the renormalized coupling const
g, to one-loop order, is shifted by a quantity expressed in
form

W d,s
g ~ t,g,L !52~n18!g2

1

Ld ( 8
k

1

~ t1ukus!2
. ~3.17!

As one can see the summand here can be expressed a
first derivative of the summand of Eq.~3.10! with respect to
t. So, the result forU can be derived from that ofR. Using
this fact one gets

W d,s
g ~ t,g,L !

5~n18!g2F L2s2d

~2p!s
Fd,s8 ~ tLs!2L2s2d

2

s~4p!d/2

3
G~22d/s!G~d/s!

G~d/2!
~ tLs!d/s22G , ~3.18!

where the prime indicates that we have the derivative of
function F with respect to its argument.

At the fixed point one ends up with

U5gF11ĝ
n18

s
~11 lnt !

1ĝ
n18

212s
G~s!F2s,s8 ~ tLs!1O~ ĝ2!G ~3.19!
02610
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for the renormalized coupling constantU. Equation~3.19! is
obtained using the fact that at one-loop order the coup
constant is renormalized byZg form Eq.~2.4c!. The obtained
expression~3.19! shows that the coupling constantU obeys
the scaling law of Eq.~3.3!. Note thatU has a finite limit as
t→0, i.e. it is analytic at the bulk critical temperature. I
deed ast→0 one can use the expansion of the functi
F2s,s(y) for small y given by ~see Appendix B!

F2s,s~y!5F2s,s~0!122syCs2
212s

sG~s!
ylny1O~y2!,

~3.20a!

where

Cs5
1

G~s!
E

0

`du

u FEs/2,1S 2
us/2

~2p!sD 2
us

ps
A 2s~u!1

us

psG .

~3.20b!

After substitution of Eq.~3.20! in Eq. ~3.19! the terms pro-
portional to logy cancel, which shows that the coupling co
stantU is finite at t50. One gets

U5gL2«F11ĝ
n18

s S 11
s

2
G~s!CsD1O~ ĝ2!G

showing thatU is analytic, as it should be, at the critica
point.

C. Some thermodynamic quantities

1. Shift of the critical point

It is obvious that the coupling constantR in the effective
Hamiltonian~3.2! is just the deviation of the temperature
the system from its ‘‘critical’’ value. By settingt50 in
~3.15!, we obtain an expression for the finite-size shift of t
bulk critical temperatureTc . This is given by

Tc2Tc~L !5«2s21
n12

n18
G~s!L2sF2s,s~0!, ~3.21!

where the coefficientF2s,s(0), appearing in the right-hand
side of Eq.~3.21! can be evaluated for some particular valu
of the interparticle interaction ranges ~Ref. @24#!

F2s,s~0!55
2z~1/2!, s51/2,

4z~1/2!b~1/2!, s51,

24.822 719 93, s53/2,

28ln2, s52.

~3.22!
3-5
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HASSAN CHAMATI AND NICHOLAY S. TONCHEV PHYSICAL REVIEW E63 026103
Here z(x) is the Riemann zeta function withz( 1
2 )

521.460 354 508 . . . andb(x) is the analytic continuation
of the Dirichlet series:

b~x!5(
l50

`
~21! l

~2l11!x
,

with b( 1
2 )50.667 691 457. . . . Remark that the function

F2s,s(0) increases as the parameters vanishes.
In fact, since there is no true phase transition in the fin

system, the critical temperature is shifted to a ‘‘pseudocr
cal’’ temperature,Tc(L), corresponding to the rounding o
the thermodynamic singularities holding in the bulk lim
From Eq.~3.21! one remarks thatTc(L) is larger thanTc ,
confirming previously obtained results in the framework
the spherical model@25#. Notice also that for the shift expo
nentl, we getl5s to lowest order in«.

2. Binder’s cumulant

In this subsection we are interested in the calculation
the amplitude ratior 5M4 /M 2

2 instead of the Binder’s cu
mulant from definition~3.9!. This quantity can be expresse
in power series of the scaling variablez5RL22h2«/2U21/2

as

r 5
n

4

G2~ 1
4 n!

G2@ 1
4 ~n12!#

H 12zFG@ 1
4 ~n16!#

G@ 1
4 ~n14!#

1
G@ 1

4 ~n12!#

G@ 1
4 n#

22
G@ 1

4 ~n14!#

G@ 1
4 ~n12!#

G1z2FG@ 1
4 ~n16!#G@ 1

4 ~n12!#

G@@ 1
4 ~n14!#G@ 1

4 n#

13
G2@ 1

4 ~n14!#

G2@ 1
4 ~n12!#

2n21G1O~z3!J . ~3.23!

So, in order to obtain a result forr it is enough to evaluatez
at the fixed pointg* and to deduce the value for the Binder
cumulant. As we mentioned before this parameter appea
all thermodynamic functions through the momenta defin
earlier in this paper.

At the fixed pointg* in the vicinity of the upper critical
dimension, we obtain

z* [
RL22h

AUL« U
fixed point

5
1

Ag*
Fy2

«

2s
yS 12

n24

n18
lnyD

12s21«
n12

n18
G~s!F2s,s~y!

2«2s22yG~s!F2s,s8 ~y!G . ~3.24!

This result is obtained by using Eq.~3.16! and the fact that
up to one loop order the terms proportional to lnL cancel. In
Eq. ~3.24!, we introduce the scaling variabley5tL1/n. Fi-
nally let us notice that from this equation one can see ea
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that z* verifies the finite-size scaling hypotheses and con
quently all the thermodynamic functions do.

At the critical temperatureTc ~i.e., t50, and soy50), we
obtain

z0* 5A«F n12

An18
AG~s!

2ps
F2s,s~0!1O~«!G . ~3.25!

Numerical values for the amplitude ratio~3.23! can be
obtained by replacing the value ofz0* from Eq. ~3.25! and
taking some specific values of the small parameter«. Note
that the scaling variablez is proportional toA« as it was
found previously~see Ref@17#. for example! in the case of
short-range forces. Furthermore it coincides with the res
of Ref @6#. for the scaling variablex in the case of long-range
interaction. Consequently all the thermodynamic functi
will be computed in powers ofA«.

3. Magnetic susceptibility

As we mentioned earlier, there is no phase transition
the finite system under consideration. Consequently th
will be no ‘‘true’’ correlation length. An expression for it ca
be deduced from that of the susceptibility~3.8! trough the
relation:

j22h5x. ~3.26!

The analyticity of the susceptibility is a consequence of t
the coupling constantsR andU.

From Eq.~3.8! in the regiontLs!1 ~i.e., z!1), we ob-
tain for the susceptibility

x5
Ls

A«

2A2

A~4p!sG~s!

An18

n

G@ 1
4~n12!#

GS n

4D
3F12zS n

4

G~n/4!

G@ 1
4 ~n12!#

2
G@ 1

4 ~n12!#

G~n/4! D
1z2S 12n

4
1

G2@ 1
4~n12!#

G2~n/4!
D

2ĝ
n18

s S 11
s

2
G~s!CsD1O~ ĝz,z3!G ~3.27!

at the bulk critical pointTc .
To the lowest order in«, after taking the limitn→`, we

find that the correlation length scales like
3-6
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j;«21/2sL,

confirming the results obtained in the spherical model@26#
and showing that this behavior is not a characteristic of
spherical limit, i.e.,n→`.

In the regiontLs@1 ~i.e., z@1), from Eq.~3.8!, we get

x5
1

t F12
n12

s
ĝlnt22s21~n12!G~s!ĝ~ tLs!21

3F2s,s~ tLs!2
1

2
~n12!~4p!s

3G~s!ĝ~ tLs!221O~ ĝ2!G . ~3.28!

The functionFd,s(y) has the following largey asymptotic
behavior~see Appendix B!

Fd,s~y!.2
~2p!s

y
1

4sps2d/2G@~d1s!/2#

y2G~2s/2!
( 8

l

1

u lud1s

~3.29a!

for the case 0,s,2, and

Fd,2~y!.2
4p2

y
1d~2p!(52d)/2y(d23)/4e2Ay

~3.29b!

for the particular cases52. These results show that the la
term in Eq.~3.28! is just canceled by the first term in Eq
~3.29!.

In the case of long-range interaction 0,s,2, we obtain
for the susceptibility

x5x`F12sĝ~n12!23s22~ tLs!23
G~3s/2!G~s!

G~12s/2!

3( 8
l

l23s1O~ ĝ2!G ~3.30!

in agreement with the finite-size scaling hypothesis~3.8!.
Equation~3.30! shows that the finite-size scaling behavior
the system is dominated by the bulk critical behavior, w
small correction in powers ofL. First the power-law falloff
of the finite-size corrections to the bulk critical behavior, d
to long-range nature of the interaction, was found in
framework of the spherical model@27,28#. Here, we ex-
tended this result to finiten using a perturbative approach.

It should be noted that the above result@Eq. ~3.30!# cannot
be continued smoothly to the case of short-range interac
s52, since thenF4,2(y) @see Eq.~3.29b!# falls off exponen-
tially fast and, correspondingly, the finite-size corrections
x are exponentially small

x5x`@128ĝA2p~n12!~ tL2!23/4e2AtL1O~ ĝ2!#. ~3.31!

In Ref. @29#, it has been argued that the approach used
Refs. @6# and @17–21# is inadequate in the regiontL2@1
aboveTc , for the latticew4 model, and one should emplo
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the ordinary perturbationapproach, whereall modesare
treated perturbatively. In this way the following result, val
for arbitrary dimensions 2,d,4, is obtained@see Eq.~4.4!
of Ref. @29##

x5x`@124~n12!u* d~2pL/j1!(12d)/2e2L/j11O~u* 2!#,
~3.32!

whereu* is the fixed point value of the renormalized co
pling constant andj1 is the bulk exponential correlation
length @30#.

Now we are in position to shed some light on this deba
Note that all our calculations are performed up to the or
g1;«1. One can easily see, by settingd542« in Eq. ~3.32!,
that both results Eq.~3.31! and Eq. ~3.32! coincide ~if ĝ
5u* /2p2) and any controversy gets down, at least up to
order«1. It is interesting to see what happens in higher ord
e.g., do the powerlike terms cancel completely up to
second loop or higher orders. In this case, however, we n
to have at our disposal the corresponding high-order term
Eqs. ~3.15! and ~3.19!. Indeed it is beyond the scope of th
present paper.

IV. CONCLUSIONS

In this paper, we have investigated the finite-size scal
properties in theO(n)-symmetricw4 model with long-range
interaction potential decaying algebraically with the interp
ticle distance. We have found that the methods develope
Refs.@16–19# can be successfully extended to systems w
long-range interaction by combining them with other know
techniques. These techniques allow the investigation to
simplified and express the results for various thermodyna
functions in terms of simple and known mathematical fun
tions.

Here we restricted our calculations to the critical doma
T*Tc and investigated the model in dimensions less than
upper critical one, which turns out to be 2s (0,s<2). We
constructed an effective Hamiltonian, from the initial on
with new coupling constantsR andU. These constants obe
the scaling hypothesis~3.3!. We found that the even mo
menta of the fieldw, related to the thermodynamics of th
finite system, are scaling functions of the characteristic v
able

z5RU21/2L22h2«/2.

This variable has the required scaling form predicted by
finite-size scaling theory. From the obtained forms of t
constantR andU one concludes thatz is a universal quantity,
which does not depend of the details of the model.

We evaluated the finite-size shift, the susceptibility a
the amplitude ratior 5M4 /M 2

2 at the tree level~lowest
order in «). We observed that the critical behavior of th
system is dominated by its bulk critical behavior away fro
the critical domain and that the finite-size scaling is relev
in the vicinity of the critical point. The amplitude ratior is
evaluated as an expansion in powers ofz;A«. Our result is
in consistency with that of Ref.@6#. But it is disagreement
with the numerical results of the same paper. There, it
been found, using the Monte Carlo method, thatr has an
expansion in« instead of its square root. At this time, we d
not have a reasonable explanation of this fact. It is also p
3-7
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sible that higher order in« could improve the result. An
amelioration of the result could also come from account
finite cutoff effects, which were to be relevant in the inve
tigation of finite systems and the comparison of the res
with numerical works@31,32#. However this is the subject o
another publication.

Notice that in the only work devoted to the exploration
finite-size scaling inO(n) systems with long-range interac
tion ~Ref. @6#! the pertinent integrals have to be evaluat
only numerically, due to the choice of a parametrization t
does not reduce thed-dimensional problem to the effectiv
one-dimensional one. The approach we used here is m
efficient in the sense that the corresponding final express
can be handled by analytical means. Consequently, we
not make a direct comparison between the results of
paper and those obtained there.

Let us note that it would be interesting and useful to e
tend the result obtained here in the static limit to mod
including dynamics, since we believe that this is closely
lated to the extensively investigated field of quantum criti
points, i.e., phase transitions occurring at zero temperat
In particular we find it useful to investigate the critical d
namic of the quantum model considered in Ref.@33# in the
largen limit.
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APPENDIX A: SOME PROPERTIES OF THE
MITTAG-LEFFLER TYPE FUNCTIONS

The Mittag-leffler type functions are defined by the pow
series@23#:

Ea,b~z!5 (
k50

`
zk

G~ak1b!
, a,b.0. ~A1!

They are entire functions of finite order of growth. Let
mention that the function corresponding the particular c
b51 was introduced by Mittag-Leffler. These function a
very popular in the field of fractional calculus~for a recent
review see Ref.@23#!.

One of the most striking properties of these functions
that they obey the following useful identity@23#:

1

11z
5E

0

`

dxe2xxb21Ea,b~2xaz!, ~A2!

which is obtained by means of term-by-term integration
the series~A1!. The integral in Eq.~A2! converges in the
complex plane to the left of the line Rez511/a, uargzu
< 1

2 ap. The identity~A2! lies in the basis of the mathemat
cal investigation of finite-size scaling in the spherical mo
with algebraically decaying long-range interaction~see Ref.
@7# and references therein!.
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In some particular cases the functionsEa,b(z) reduce to
known functions. For example, in the case corresponding
the short-range case we have

E1,1~z!5exp~z!. ~A3!

Settingz5y2a, y.0 andx5ty, we obtain the Laplace
transform

ya2b

11za
5E

0

`

dte2zttb21Ea,b~2ta! ~A4!

from which we derive the identity~3.11! by settingb5a.
The asymptotic behavior of the Mittag-Leffler functions

given by the Lemma:@34#
Let 0,a,2, b be an arbitrary complex number, andg

be a real number obeying the condition

1

2
ap,g,min$p,ap%.

Then for any integerp>1 the following asymptotic expres
sions hold whenuzu→`:

~1! At uargzu<g,

Ea,b~z!5
1

a
z(12b)/aez1/a

2 (
k51

`
z2k

G~b2ak!
1O~ uzu2p21!.

~A5!

~2! At g<uargzu<p,

Ea,b~z!52 (
k51

`
z2k

G~b2ak!
1O~ uzu2p21!. ~A6!

APPENDIX B: ASYMPTOTIC BEHAVIOR
OF THE FUNCTION F d,s„y…

To obtain the smally behavior ~3.20a! of the function
Fd,s(y) we use the identity@22#

lnf5aE
0

`dx

x
@Ea,1~2xa!2Ea,1~2yxa!# ~B1!

and the definition of the functionFd,s(y):

Fd,s~y!5E
0

`

dxxs/2 21Es/2,s/2S 2
yxs/2

~2p!sD
3FA d~x!212S p

x D d/2G . ~B2!

After some algebra one obtains:

F2s,s~y!5F2s,s~0!122syCs2
212s

sG~s!
ylny1O~y2!,

~B3a!

where

Cs5
1

G~s!
E

0

`du

u FEs/2,1S 2
us/2

~2p!sD 2
us

ps
A 2s~u!1

us

psG .

~B3b!
3-8
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To obtain the largey asymptotic behavior~3.29! of the
function Fd,s(y) we rewrite Eq.~B2! in the form

Fd,s~y!5pd/2E
0

`

dxxs/22d/221Es/2,s/2

3S 2
yxs/2

~2p!sD( 8
l

e2p2l2/x

2E
0

`

dxxs/221Es
2 ,

s
2S 2

yxs/2

~2p!sD . ~B4!
a

a

s

02610
Using the identity

E
0

`

dxxs/221Es/2,s/2~2xs/2!51, s.0, ~B5!

from the second term of Eq.~B4! we obtain the first terms o
Eqs.~3.29a! and ~3.29b!, respectively.

Next taking into account Eq.~A6! or Eq. ~A3! for the
functionEa,b(z), and after subsequent integration in the fi
term of Eq.~B4!, we obtain finally the asymptotic behavio
given by Eqs.~3.29a! and ~3.29b!.
.
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